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Hydrodynamic clouds and Bose-Einstein condensation
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Abstract. We discuss the characterization of dense elongated clouds of 87Rb in the context of the process
of Bose-Einstein condensation under hydrodynamic conditions. The condensation is induced by shock-
cooling of thermal clouds. This gives rise to strong temperature gradients and results in a non-equilibrium
shape of the (quasi)condensate with strong phase fluctuations just after formation.

1. INTRODUCTION

Almost a decade after the first observation of Bose-Einstein condensation in atomic gases [1, 2] much
remains to be learned about the processes that transform a classical thermal gas into a coherent macro-
scopic quantum object, the condensate. To study condensate formation one typically starts with a ther-
mal cloud, carefully prepared under equilibrium conditions just above the critical temperature [3–5].
Extracting heat, the gas is pulled out of equilibrium and after some time the condensate will nucleate
and grow. Unlike classical growth, condensate formation involves not only a kinetic stage but also a
coherent stage. This reflects the Bose statistics, which favor scattering into quantum states that are al-
ready occupied. Aside from the occupation the phase properties should also be considered. In particular
for elongated condensates phase fluctuations can persist long after the condensate has formed. Thus
different characteristic times are to be distinguished for nucleation, growth, and phase relaxation [6].

In this contribution we discuss some phenomena typical for condensate formation in dense elon-
gated clouds. The high column density gives rise to hydrodynamic behavior. This differs in several
aspects from the familiar behavior of collisionless thermal clouds, affecting both static and dynamic
properties [7–14]. We discuss how the expansion behavior and time-of-flight thermometry are af-
fected [13,14]. Further, we discuss how temperature gradients give rise to the formation of condensates
in non-equilibrium shapes [5].

2. CHARACTERIZING HYDRODYNAMIC THERMAL CLOUDS

In Amsterdam [5, 14], we prepare our samples by loading a magneto-optical trap with approximately
1010 atoms from the 87Rb source described in [15]. After optical pumping to the |S 1/2, F = 2,mF = 2〉
state typically 4 × 109 atoms are captured in a Ioffe-Pritchard quadrupole magnetic trap with axial
frequency ωz/2π = 20.8(1) Hz and radial frequency ωρ/2π = 477(2) Hz, respectively. Then, the
gas is compressed and evaporatively cooled to a temperature just above TC . This yields a cloud of N =
3.5(3)×106 atoms at density n0 = 3.6(6)×1014 cm−3 in the trap center and temperature T0 = 1.17(5) µK,
corresponding to a degeneracy (fugacity) of D = 0.95(4).

To arrive at these numbers we have to go beyond the standard time-of-flight analysis for collisionless
clouds [16]. The procedure is illustrated in Fig.1 . The absorption image taken at 10.3 ms of expansion is
shown in Fig.1a. The optical density is related to the column density n2(z, ρ) of an initially harmonically
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Figure 1. a) Time-of-flight absorption image; b) The function n2(z, ρ) after fitting, plotted as optical density. c) Axial
profile of column density showing the fit result for D = 0.98 and L = 18 mm (solid line). The dash-dotted line
corresponds to a gaussian profile with the same axial size L.

confined Bose gas. Presuming scaling of the cloud shape during the expansion, this can be written as
(see e.g. [16])

n2(z, ρ) = n20g2[De−[z/L]2−[ρ/R]2

]/g2[D], (2.1)

where n20 is the peak column density and the Bose enhancement is expressed by the g2 function, defined
by ga[x] =

∑∞
l=1 xl/la. The parameters L(t) and R(t) define the axial and radial sizes at expansion time

t; D is the degeneracy of the cloud. We obtain Fig.1b by fitting Eq.(2.1) to the data. In Fig.1c we show
the column density profile along the symmetry axis. The solid line in Fig.1c corresponds to a Bose
distribution with D = 0.98. The dashed line represents a gaussian with the same L. In this case the
central Bose-enhancement is g2[D]/D = 1.55.

For short expansion times (t � 1/ωz) , the initial axial size is observed, L(t) � L(0) ≡ L0, and the
temperature T0 follows with

1
2 mω2

z L2
0 = kT0 + Emf, (2.2)

where Emf = g
∫

n2(r)dr/
∫

n(r)dr with g = (4π�2/m)a the interaction coupling constant [12–14]1.
Introducing ξ ≡ Emf/(kT0 + Emf), we can rewrite Eq.(2.2) as 1

2 m(1 − ξ)ω2
z L2

0 = kT0. Hence, the effect
of the mean field is to ‘dress’ the trapping potential, broadening the density distribution to yield a
slightly lower effective frequency. The central density in the cloud follows with n0 = g3/2[D]/Λ3

0, where
Λ0 = (2π�2/mkT0)1/2 is the thermal wavelength. Even at the relatively high densities discussed here,
the mean field correction remains small, ξ ≈ 0.03, and results only in small corrections of T0 and n0.
The total atom number is given by

N = β4
0g3[D]

(m ω̄
2�

)3
L6

0, (2.3)

where β0 = R0/L0 = ωz/ωρ is the aspect ratio and ω̄ = (ω2
ρωz)1/3(1 − ξ)1/2 the mean dressed trap

frequency. Note that, just above TC, knowledge of the optical absorption cross section is not required
to determine the total atom number2. In this case the accuracy of N is limited by the experimental error
in D.

1This expression is correct to first order in the mean field correction, presuming the cloud shape to remain ideal-gas-like.
2In the classical limit g3[D] � D and the Bose-enhancement factor g2[D]/D differs too little from unity to extract a value for

D from only the shape of the n2(z, ρ) fit. In this case the total atom number is determined with N = n20πL0R0 and, hence, requires
knowledge of the optical cross section.
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Figure 2. Aspect ratio β(t) = R(t)/L(t) as a function of expansion time t. The solid dots are obtained for the
hydrodynamic clouds discussed in the text. The open circles correspond to collisionless clouds.

Although the interaction effects are too weak to sizeably broaden the thermal distribution, they
strongly affect the expansion behavior of dense thermal clouds: as opposed to the collisionless case,
dense elongated clouds expand anisotropically (see Fig.2). When the collisional mean free path is less
than the smallest characteristic size of a cloud, pressure gradients will drive the expansion hydrodynam-
ically [7, 9]. Therefore, dense elongated clouds display an increased expansion velocity in the radial
direction. Because the density drops rapidly, the gas becomes collisionless before a hydrodynamic kick
can develop in the axial direction. The increase of the radial expansion velocity goes at the expense of
the gas temperature, i.e. the gas cools isentropically to a temperature T∗ < T0. This results in a decrease
of axial expansion velocity as compared to that of a collisionless cloud at the same temperature [13,14].

The anisotropy of expansion has important consequences for time-of-flight thermometry. In cases
where the axial and radial asymptotic expansion velocities vz and vρ, corresponding to the effective
temperatures Tz and Tρ, are known3, T0 can be calculated with [14]4

3
2 T0(1 + 2

3ξ) =
1
2 Tz + Tρ. (2.4)

However, even single shot time-of-flight information is sufficient to calculate all three temperatures
including hydrodynamic and mean field effects. For intermediate expansion times t, when the radial
expansion velocity has reached its asymptotic value, Tρ is known as is the aspect ratio β(t) = R(t)/L(t) �
1. In such cases the isentropic cooling ratio T∗/T0 and the ratio Tρ/T0 may be estimated by inverting the
expression for the aspect ratio given in Ref. [14]

T∗
T0
=

3 + 2ξ
1 + 2β2(t)

− 1
ω2

z (t − t∗)2

1
1 + β−2(t)/2

;
Tρ
T0
=

3
2

(

1 − 1
3

T∗
T0

)

+ ξ. (2.5)

Here t∗ ≡ (1/ωρ)[(T0/T∗)3/2 − 1]1/2 is the characteristic time after which the expansion is collisionless.
The solid line in Fig.2 corresponds to t∗ ≈ 0.3 ms, ξ = 0.03, T∗/T0 = 0.71 and Tρ/T0 = 1.15, fitting
the expression for the aspect ratio given in Ref. [14]. With the measured Tρ = 1.35 µK we obtain

3The asymptotic expansion velocities are defined as vz (t) ≡ L̇(t) and vρ (t) ≡ R(t), and are related to the effective temperatures
through vi = lim

t→∞ vi (t) = (2kBTi/m)1/2, with i ∈ {ρ, z}.
4This expression is valid under conditions where the thermal motion is only partially converted into directed motion (no

collisional hydrodynamic kick in axial direction). The mean field is fully converted into directed motion.
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T0 = 1.17 µK. This result can obtained with Eqs.(2.5) after one iteration, starting out with t∗ = 0 and
ξ = 0 and the data of a single absorption image. Note that the cooling is substantial (29%) although
only a few collisions take place before the velocities freeze out at time t∗.

Having established the initial temperature T0 and the central density n0 it is straightforward to cal-
culate the mean free path λ0. For the trap center we find with the usual expression for a uniform gas
λ0 = (

√
2n0σ)−1 ≈ 3 µm [17]. Here σ = 8πa2 is the elastic scattering cross-section in the s-wave

limit with a = 98.98(4)a0 the scattering length [18]. For the highest densities studied in Amsterdam
we calculate in the radial direction λ0/R0 ≈ 0.5, which corresponds to the cross-over regime between
collisionless and hydrodynamic behavior. As evident from Fig.2. even at the onset of hydrodynamic
conditions the effects are already quite noticeable.

3. CONDENSATE FORMATION IN HYDRODYNAMIC CLOUDS

Let us now have a look at the consequences of the hydrodynamicity for condensate formation. In col-
lisionless clouds, condensates are typically [1, 2] created by quasi-static growth, with heat extraction
limiting the formation rate. This results in equilibrium condensates in the center of the trap, in accor-
dance with the ideal gas picture of a condensate growing from the harmonic oscillator ground state. To
observe the actual formation process, the heat should be extracted much faster, i.e. on a time scale shorter
than the formation time. Since the first experiment on condensate growth, by Miesner et al. [3], this is
done by fast radio-frequency (rf) removal of the most energetic atoms from the trap (shock cooling).
Starting from a thermal gas just above TC, the condensate appears as the result of thermalization. Mies-
ner et al. [3] observed the growth under adiabatic conditions. Köhl et al. [4] continued the extraction of
heat by evaporating atoms, also during growth. In both experiments, the condensate was observed to
grow from the trap center as expected for clouds under close to collisionless conditions [19].

For the experiments in Amsterdam, with λ0/L0 ≈ 0.02 in axial direction, the Knudsen criterion
for axial hydrodynamicity (λ0/L0 � 1) is very well satisfied. The small mean free path allows us to

Figure 3. Axial condensate size L(t) as a function of evolution time t for an expansion time of τ = 2.8 ms. The gray
line is a guide to the eye and is compatible with a strongly damped quadrupole oscillation.

presume a local thermal equilibrium and, hence, the occurrence of axial temperature gradients. As can
be seen in Fig.3, shock cooling leads in this case to simultaneous nucleation over a major part of the
cloud length and subsequent shape oscillations before equilibrium is reached. The gas is cooled by a
brief rf truncation of the trap to a depth of εtr ≈ 3 µK, which removes ∼ 50% of the atoms from the
T0 = 1.17 µK cloud. This truncation stage has a duration of ttr = 1 ms, long enough (ttr > 1/ωρ) to allow
atoms with radial energy ερ > εtr to escape from the trap, yet short enough to avoid evaporative cooling.
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Figure 4. Properties of the hydrodynamic cloud described in section 2: a) 1D axial density distribution for three
evolution times: cloud just after truncation; condensate just after nucleation; equilibrium condensate. b) Dashed
line: the local distribution TC(z) for the truncated distribution shown at the left; solid line: the local temperature
Tf(z) before global thermalization as calculated with Eq.(3.5). In between the dotted lines the gas will locally Bose
condense.

Then, the radio frequency is stepped back up for a variable time tth to allow the gas to thermalize under
formation of a condensate. At the end of this thermalization stage the trap is switched off and the cloud
is analyzed after an expansion time τ by absorption imaging.

To follow the evolution of the trapped gas after truncation we took time-of-flight absorption images
for a range of evolution times t ≡ ttr + tth and a fixed expansion time τ. The images show a bimodal
distribution, indicating that the truncation procedure results in BEC. The condensate fraction grows to
a final value of 6% with a characteristic time of 6 ms. For the shortest expansion time, τ = 2.8 ms
(τ � 1/ωz), the axial size L(τ) of the condensate is still close to the axial size L0 of the condensate in
the trap, just prior to release. As shown in Fig.3, L(t) initially exceeds the equilibrium length L∞ by a
factor L0/L∞ = 2.2(3) and rapidly decreases to reach the equilibrium value after one strongly damped
shape oscillation [5].

Knowing the trap potentialU(z, ρ), the truncation energy εtr and the initial (global) temperature T0

and degeneracy D, we can use an ideal Bose gas model to estimate the axial density- and temperature-
profiles immediately after the gas has (locally) thermalized. In Fig.4a we plot the 1D density distribution
just after truncation,

n1(z) =
1
Λ

(
kT
�ω̄ρ

)2g5/2[D(z)]PBE[5/2, η(z),D(z)]. (3.1)

Here, PBE[5/2, η(z),D(z)] is the local Bose-Einstein truncation function5 with D(z) = De−U(z)/kT the
local fugacity. All atoms with energy ε > εtr are presumed to escape. On the basis of Eq.(3.1) we
can calculate the local BEC transition temperature TC(z), treating the trap locally as a short section of a

5The function PBE[a, η,D] is defined in analogy with the regularized incomplete gamma functions P[a, η] =∫ η
0 dX Xa−1 e−X/Γ(a) used to describe truncated gaussian clouds,

PBE[a, η,D] =
1
ga[D]

∞∑

l=1

Dl

la
P[a, lη],

where η(z) = [εtr −U(z)] /kT0 is the local truncation parameter at position z on the trap axis. PBE[a, η,D] increases monotonically,
for values of a > 0 and 0 < D ≤ 1, from zero at η = 0 to unity for η→ ∞.
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cylindrically-symmetric radially harmonic trap6

kTC(z) = �ωρ

(
2π�
mωρ

)1/5 ( n1(z)
ζ(5/2)

)2/5

, (3.2)

where ζ(n) is the Riemann Zeta function. The result is shown as the dashed line in Fig.4b. For the ideal
gas it is also straightforward to calculate the local energy per remaining atom along the symmetry axis
just after truncation but before local thermalization

E1(z)
n1(z)

= U(z, 0) +
5
2

kT0
g7/2[D(z)]PBE[7/2, η(z),D(z)]

2g5/2[D(z)]PBE[5/2, η(z),D(z)]
. (3.3)

With the local energy per remaining atom known, we can estimate the temperature Tf(z) presuming local
thermalization

E1(z)
n1(z)

= U(z, 0) +
5
2

kTC
ζ(7/2)
ζ(5/2)

[Tf(z)/TC(z)]7/2. (3.4)

This expression is valid wherever the cloud is Bose condensed7. Equating Eqs.(3.4) and (3.3) we obtain
an expression for Tf(z)/TC(z). This expression is particularly simple for the case T0 = TC (D = 1),

Tf(z)
TC(z)

=

[
ζ(5/2)
ζ(7/2)

g7/2[D(z)]

g5/2[D(z)]
PBE[7/2, η(z),D(z)]
PBE[5/2, η(z),D(z)]

]2/7

. (3.5)

For this special case we calculate Tf(z)/TC(z) < 1 for η(0) � 5, which implies BEC over the full length
of the cloud where the presumption of local thermalization can be justified.

For the experiments in Amsterdam the degeneracy parameter is D ≈ 0.95, hence T0 > TC.Numerical
calculation shows that in this case the condensate will not nucleate over its full length but still over a
region larger than the equilibrium size. This region is indicated by the dotted lines in Fig.4b. In Fig.4a
the initial condensate shape is indicated along with the final equilibrium condensate. As the length of
the equilibrium condensate is less than the size at nucleation, the cloud will oscillate in shape to reach
equilibrium.

The simultaneous condensation over a large region as a result of local thermalization supports the
physical picture in which, just after nucleation, there is no phase coherence over distances larger than
approximately one mean free path. In such condensates the mean field suppresses density fluctuations
but long-range phase coherence is absent. Quasicondensates of this type were put forward in relation to
Bose-Einstein condensate formation by Svistunov et al. [6,20,21]. Later it was shown that in elongated
condensates thermally excited phase fluctuations can persist also under equilibrium conditions [22].
This was demonstrated experimentally in Hannover and Orsay [23,24]. In Amsterdam, it was shown by
condensate focusing that 11 ms after nucleation the phase coherence length is still of the order of 1 µm,
demonstrating the presence of excess (non-equilibrium) phase fluctuations [5, 25].
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[13] Pedri P., Guéry-Odelin D. and Stringari S., Phys. Rev. A 68 (2003) 043608.
[14] Shvarchuck I., Buggle Ch., Petrov D.S., Kemmann M., von Klitzing W., Shlyapnikov G.V. and

Walraven J.T.M., Phys. Rev. A 68 (2003) 063603.
[15] Dieckmann K., Spreeuw R.J.C., Weidemüller M. and Walraven J.T.M., Phys. Rev. A 58 (1998)

3891.
[16] Ketterle W., Durfee D.S. and Stamper-Kurn D.M., in Proc. Int. School Phys. Enrico Fermi course

CXL, M. Inguscio, S. Stringari, C. Wieman (Eds.), IOS Press, Amsterdam (1999).
[17] Chapman S. and Cowling T.G., The Mathematical Theory of Non-Uniform Gases, Cambridge

University Press, Cambridge 1970.
[18] van Kempen E.G.M., Kokkelmans S.J.J.M.F., Heinzen D.J. and Verhaar B.J. Phys. Rev. Lett. 88

(2002) 93201.
[19] Gardiner C.W., Zoller P., Ballagh R.J. and Davis M.J., Phys. Rev. Lett. 79 (1997) 1793.
[20] Svistunov B.V., J. Mosc. Phys. Soc. 1 (1991) 373.
[21] Berloff N.G. and Svistunov B.V., Phys. Rev. A 66 (2002) 13603.
[22] Petrov D.S., Shlyapnikov G.V. and Walraven J.T.M., Phys. Rev. Lett. 87 (2001) 50404.
[23] Dettmer S., Hellweg D., Ryytty P., Arlt J.J., Ertmer W. and Sengstock K., Petrov D.S. and Shlyap-

nikov G.V., Kreutzmann H., Santos L. and Lewenstein M., Phys. Rev. Lett. 87 (2001) 160406;
App. Phys. B73 (2001) 1.

[24] Gerbier F., Thywissen J.H., Richard S., Hugbart M., Bouyer P. and Aspect A., Phys. Rev. A 67
(2003) 051602.

[25] Shvarchuck I., Buggle C., Petrov D.S., Kemmann M., Tiecke T.G., von Klitzing W., Shlyapnikov
G.V. and Walraven J.T.M., in: Interactions in Ultracold Gases: From Atoms to Molecules, M.
Weidemüller & C. Zimmermann (Eds.), J. Wiley, New York (2003)


